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Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe how continuous integration helps to catch errors sooner in 
the software lifecycle


• Use continuous integration systems to automate testing in real 
software projects



Cost to Fix a Defect Over Time
Rough estimate
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Feedback loops we’ve covered: 
Requirements analysis, unit testing, code review

Old feedback loop: do this infrequently 
New feedback loop: do this continuously



Continuous Integration
Motivation

• Our systems involve many components, some of which might even be in 
different version control repositories


• How does a developer get feedback on their (local) change?
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Continuous Integration
Continuously assembling and testing our entire codebase
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Build Systems
Automatically compiling code and generating executables

• You’ve probably used multiple of these:


• Make, maven, ant, gradle, grunt, sbt


• Why use a build system?


• Builds should be repeatable


• Builds should be reproducible


• Builds should be standard



Build Systems
Not just compilation

• Fetch dependencies and link them (using a package manager like maven, pip 
or npm)


• Provision & teardown resources for integration testing


• Run tests


• Generate a release archive


• Ideally, do this all in parallel as much as possible



How do we apply continuous integration?
Testing the right things at the right time

• Do we integrate changes immediately, or do a pre-commit test?


• Which tests do we run when we integrate?


• How do we compose the system under test at each point?
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Continuous Integration in Practice
Small scale, with a service like CircleCI, GitHub Actions or TravisCI
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Continuous Integration in Practice
Large scale example: Google TAP

• >50,000 unique changes per-day, > 4 billion test cases per-day


• Pre-submit optimization: run fast tests for each individual change (before 
code review). If fast tests pass, allow the merge to continue


• Then: run all affected tests; “build cop” monitors and acts immediately to roll-
back or fix


• Build cop monitors integration test runs


• Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)



Continuous Integration in Practice
Medium-scale example with branches

Git Branch Continuous Integration Pipeline

Develop lint unit test 

Staging lint unit test integration test

Stable lint unit test integration test deploy



Example CI Pipeline
Open source project: PrestoDB

https://travis-ci.com/github/prestodb/presto 

https://travis-ci.com/github/prestodb/presto


Example CI Pipeline - TravisCI
At a glance, see history of build

https://travis-ci.com/github/prestodb/presto 

https://travis-ci.com/github/prestodb/presto


Continuous Integration
Summary and next steps

• CI helps catch errors sooner in the software lifecycle by performing 
integration and end-to-end tests sooner


• CI can be applied in small-scale projects by running complete test suites for 
each commit, or in larger projects by running pre-commit tests per-commit 
and complete integrations regularly


• CI assumes the ability to automatically provision infrastructure on which to 
run those integration tests [next lesson]
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