CS 4530 & CS 5500
Software Engineering

Lecture 10.2: Continuous Integration

Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences
© 2021, released under CC BY-SA



http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

By the end of this lesson, you should be able to...

* Describe how continuous integration helps to catch errors sooner In
the software lifecycle

* Use continuous integration systems to automate testing in real
software projects



Cost to Fix a Defect Over Time

Rough estimate

- Old feedback loop: do this infrequently

3 New feedback loop: do this continuously

O

0

Q

O

O

Feedback loops we’ve covered.:
Requirements analysis, unit testing, code review
/
8} Q% O@L < o G 2% . <o y
g Y S S 2 0, 0% S,
Co (9 % 4 ?,: 7 ¢ Y
0 2 9 A 7 QU Cyx. '~
)X e Q (o 7 & )
2 S Q % ) (&
Q 7 o 7 SPS
s (% % %
% %
L/Q C}e.
4 0,



Continuous Integration

Motivation

* QOur systems involve many components, some of which might even be in
different version control repositories

 How does a developer get feedback on their (local) change”?

Our changed code

l

Cache Build Build Build Send
Check friends list Newsfeed Suggestions response

Other developers’ changed code



Continuous Integration

Continuously assembling and testing our entire codebase

Develop Deploy Monitor

End-to-end
Test KPIs
Code Review Style Check Integration Test

Compile Load Test

Unit Test

Prepare
Deployment

Automate this centrally, provide a central record of results



Build Systems

Automatically compiling code and generating executables

* You’'ve probably used multiple of these:
 Make, maven, ant, gradle, grunt, sbt
 Why use a build system?
* Builds should be repeatable
* Builds should be reproducible

 Builds should be standard



Build Systems

Not just compilation

* Fetch dependencies and link them (using a package manager like maven, pip
or npm)

* Provision & teardown resources for integration testing
* Run tests
* (Generate a release archive

» |deally, do this all in parallel as much as possible



How do we apply continuous integration?
Testing the right things at the right time

Do we integrate changes immediately, or do a pre-commit test?
* Which tests do we run when we integrate?

 How do we compose the system under test at each point?

Changed code

l
Cache Build Build Build Send
Check friends list Newsfeed Suggestions response

Other developers’ changed code



Continuous Integration in Practice

Small scale, with a service like CircleCl, GitHub Actions or TravisCI

GitHub

D
% for updates

Commits code to

Developer

CircleCl G”H“O TravisCl
Actions

Runs build for each
commit



Continuous Integration in Practice

Large scale example: Google TAP

 >50,000 uniqgue changes per-day, > 4 billion test cases per-day

* Pre-submit optimization: run fast tests for each individual change (before
code review). If fast tests pass, allow the merge to continue

* Then: run all affected tests; “build cop” monitors and acts immediately to roll-
back or fix

* Build cop monitors integration test runs

* Average walit time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)



Continuous Integration in Practice

Medium-scale example with branches

Git Branch Continuous Integration Pipeline
Develop lint unit test
Staging lint unit test integration test

Stable lint unit test integration test | deploy




Example CI Pipeline

Open source project: PrestoDB

prestodb / presto

Current Branches

Build History

Pull Requests

build 'passing

X Pull Request #15372 Fix extracting logic in dynamic filtering whe

L L L L L X

When integrating with filter pushdown, we extract dynami

-O- Commitcde9e65 £

1 #15372: Fix extracting logic in dynamic filtering when integrated wi

I Branchmaster

M Ke

Build jobs

1+ 52304.1

H 52304.2

+ 52304.3

+# 52304.4

+# 52304.5

+ 52304.6

{: AMD64

{ AMD64

{ AMD64

) AMD64

) AMD64

) AMD64

£ Trusty
£ Trusty
Trusty
Trusty
Trusty

Trusty

View config

</> Java

</> Java

</> Java

</> Java

</> Java

</> Java

{9 #52304 failed

(¢ Ran for 17 min 40 sec
(Y Total time 10 hrs 26 min 10 sec

10 hours ago

) MAVEN_CHECKS=true
) WEBUI_CHECKS=true
[T) TEST_SPECIFIC_MODULES=presto-tests
() TEST_SPECIFIC_MODULES=presto-tests
() TEST_SPECIFIC_MODULES=presto-tests

() TEST_SPECIFIC_MODULES=presto-tests

More options

(© 10 min 51 sec
(© 58sec

(© 6 min 7 sec
(© 24 min 50 sec
(© 7 min 45 sec

(Y 8 min 4 sec

https://travis-ci.com/qithub/prestodb/presto



https://travis-ci.com/github/prestodb/presto

Current Branches

< master

‘ James Sun

master

Andrii Rosa

| master
@ Wwenlei Xie
I </ master

Andrii Rosa

< master

@ Maria Basmanova

< master

prestodb / presto

Build History

build ' passing

Pull Requests

This patch bumps Alluxio dependency to 2.3.0-:

Handle query level timeouts in Presto on Spark

Fix flaky test for TestTempStorageSingleStream

Check requirements under try-catch

Update TestHiveExternalWorkersQueries to cre:

Introduce large dictionary mode in SliceDiction

Example CI Pipeline - TravisCI

At a glance, see history of build

-O- #52300 passed
-O- 36392a2 ¢

-0- #52287 errored

-O- aab5ea7 7

-0- #52284 errored
-0- 193a4cd 7

-o- #52283 passed
o fff331f

-O- #52282 passed

-O- 746d7b5 £

-o- #52277 passed

P NN dN™ P ]

(Y 10 hrs 49 min 31 sec
2 days ago

(Y 11 hrs 6 min 44 sec
2 days ago

(© 11 hrs 50 min 37 sec
2 days ago

(Y 11 hrs 3 min 20 sec
2 days ago

(Y 10 hrs 55 min 37 sec

2 days ago

(Y 10 hrs 43 min 30 sec

- RS

More options —

https://travis-ci.com/qithub/prestodb/presto



https://travis-ci.com/github/prestodb/presto

Continuous Integration

Summary and next steps

* Cl helps catch errors sooner in the software lifecycle by performing
integration and end-to-end tests sooner

* Cl can be applied in small-scale projects by running complete test suites for
each commit, or in larger projects by running pre-commit tests per-commit
and complete integrations regularly

* Cl assumes the ability to automatically provision infrastructure on which to
run those integration tests [next lesson]



This work is licensed under a Creative Commons
Attribution-ShareAlike license

* This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

e You are free to:

e Share — copy and redistribute the material in any medium or format
 Adapt — remix, transform, and build upon the material
e for any purpose, even commercially.

* Under the following terms:

e Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

e ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.


http://creativecommons.org/licenses/by-sa/4.0/

