
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences 
© 2021, released under CC BY-SA

CS 4530 & CS 5500
Software Engineering
Lecture 10.2: Continuous Integration

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe how continuous integration helps to catch errors sooner in
the software lifecycle

• Use continuous integration systems to automate testing in real
software projects

Cost to Fix a Defect Over Time
Rough estimate

De
fe

ct
 C

os
t

Concept

Design

Development

Local Testing
Commit/Code Review
Integration

Production
Late-Stage Production

Feedback loops we’ve covered: 
Requirements analysis, unit testing, code review

Old feedback loop: do this infrequently 
New feedback loop: do this continuously

Continuous Integration
Motivation

• Our systems involve many components, some of which might even be in
different version control repositories

• How does a developer get feedback on their (local) change?

My Social Network App

Cache
Check

Send
response

Build
friends list

Build
Suggestions

Build
Newsfeed

Our changed code

Other developers’ changed code

0…………….

Continuous Integration
Continuously assembling and testing our entire codebase

Develop Build Test Deploy Monitor

Code Review Style Check

Compile

Unit Test

Prepare
Deployment

Integration Test

Load Test

Automate this centrally, provide a central record of results

KPIsEnd-to-end
Test

Build Systems
Automatically compiling code and generating executables

• You’ve probably used multiple of these:

• Make, maven, ant, gradle, grunt, sbt

• Why use a build system?

• Builds should be repeatable

• Builds should be reproducible

• Builds should be standard

Build Systems
Not just compilation

• Fetch dependencies and link them (using a package manager like maven, pip
or npm)

• Provision & teardown resources for integration testing

• Run tests

• Generate a release archive

• Ideally, do this all in parallel as much as possible

How do we apply continuous integration?
Testing the right things at the right time

• Do we integrate changes immediately, or do a pre-commit test?

• Which tests do we run when we integrate?

• How do we compose the system under test at each point?

My Social Network App

Cache
Check

Send
response

Build
friends list

Build
Suggestions

Build
Newsfeed

Changed code

Other developers’ changed code

Continuous Integration in Practice
Small scale, with a service like CircleCI, GitHub Actions or TravisCI

Commits code to
Developer

GitHub

TravisCI

Checks for updates

Runs build for each
commit

GitHub
ActionsCircleCI

Continuous Integration in Practice
Large scale example: Google TAP

• >50,000 unique changes per-day, > 4 billion test cases per-day

• Pre-submit optimization: run fast tests for each individual change (before
code review). If fast tests pass, allow the merge to continue

• Then: run all affected tests; “build cop” monitors and acts immediately to roll-
back or fix

• Build cop monitors integration test runs

• Average wait time to submit a change: 11 minutes

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Continuous Integration in Practice
Medium-scale example with branches

Git Branch Continuous Integration Pipeline

Develop lint unit test

Staging lint unit test integration test

Stable lint unit test integration test deploy

Example CI Pipeline
Open source project: PrestoDB

https://travis-ci.com/github/prestodb/presto

https://travis-ci.com/github/prestodb/presto

Example CI Pipeline - TravisCI
At a glance, see history of build

https://travis-ci.com/github/prestodb/presto

https://travis-ci.com/github/prestodb/presto

Continuous Integration
Summary and next steps

• CI helps catch errors sooner in the software lifecycle by performing
integration and end-to-end tests sooner

• CI can be applied in small-scale projects by running complete test suites for
each commit, or in larger projects by running pre-commit tests per-commit
and complete integrations regularly

• CI assumes the ability to automatically provision infrastructure on which to
run those integration tests [next lesson]

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

